Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease
نویسندگان
چکیده
Background: Drug repurposing is the fastest effective method to provide treatment for coronavirus disease (COVID-19). Drugs that targeting a closely related virus with similar genetic material such as hepatitis C (HCV) and more specifically viral protease would be an excellent choice. Methods: In this study, we carried out virtual screening fifteen anti HCV drugs against COVID-19 main using computational molecular docking techniques. Moreover, Velpatasvir (4) Sofosbuvir (13) were further evaluated through dynamics simulations followed by calculating binding free energy mechanics generalised born/solvent accessibility (MM-GBSA) approach. Results: The affinity descending order was N3 natural inhibitor (1), (4), (13), Ombitasvir (3), Glecaprevir (2), Asunaprevir (8), Paritaprevir (10), Grazoprevir (11), Elbasvir (6), Ledipasvir (5), Daclatasvir (7), Pibrentasvir (9), Simeprevir (12), Dasabuvir (14), Taribavirin (16) finally Ribavirin (15). Molecular simulation reveals has exciting properties it stable within active site; also showed good MM-GBSA compared N3. Conclusion: Our results could auspicious fast of examined either alone or in combinations each other COVID-19. Furthermore, work provides clear spot on structure-activity relationship (SAR) severe acute respiratory syndrome 2 (SARS-CoV-2) helps design synthesis new future well.
منابع مشابه
Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کاملThree new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کاملSynthesis novel bis-Coumarin derivatives as potential acetylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study
Alzheimer's disease is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills and ultimately the ability to do the simplest things and can lead to death. Cholinesterases (ChEs) play an important role in controlling cholinergic transmission, and subsequently, by inhibiting CHEs, acetylcholine levels in the brain are elevated. Coumarins have been shown to e...
متن کاملDesigning a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations
The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...
متن کاملMolecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin
Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pharmaceutical Sciences
سال: 2021
ISSN: ['2383-2886']
DOI: https://doi.org/10.34172/ps.2021.3